
Web-Gorgias-B: Argumentation for All

Nikolaos I. Spanoudakis1 a, Konstantinos Kostis2 and Katerina Mania2

1Applied Mathematics and Computers Laboratory (AMCL), School of Production Engineering and Management,
Technical University of Crete, Chania, Greece

2SURREAL Team, Distributed Multimedia Information Systems and Applications Laboratory (MUSIC),
School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece

Keywords: Computational Argumentation, Knowledge Representation and Reasoning, Knowledge Engineering,
Hierarchical Argumentation Frameworks, Web-based Interaction, Intelligent User Interfaces.

Abstract: This paper proposes the use of a web-based authoring tool for the development of applications of argumenta-
tion. It focuses on aiding people that have little, or no knowledge of logic programming, or of an argumentation
framework, to develop argumentation-based decision policies. To achieve this, it proposes an implementation
of the table formalism that has recently been proposed in the literature. The proposed implementation con-
tains original features that were evaluated by experts in web-application development, students and experts in
argumentation. The main feature of the proposed system is the ability to define a default preferred option in a
given scenario, thus, allowing for other options to be used in further refinements of the scenario. We followed
a user-centered development process using the think aloud protocol. We evaluated the usability of the system
with the System Usability Scale, validating our hypothesis that even naive users can employ it to define their
decision policies.

1 INTRODUCTION

Argumentation is a relatively-new, fast-paced tech-
nology that, following the AI trend, has started
producing real-world applications. Argumentation
has been addressed as a way to deal with con-
tentious information and draw conclusions about it
(Van Eemeren et al., 2004). The main focus of its
applications is for making context-related decisions.

Medica, for example, is an argumentation system
that allows for deciding if a specific person can have
access to sensitive medical files, based on a) who
is the requester, e.g. the owner, a medical doctor,
etc, b) what is the reason for requesting access (re-
search, treatment, etc), and, c) what additional sup-
port is available, e.g. order from the medical associa-
tion, written consent from the owner and other similar
requests. Argumentation allows such decisions to be
explainable to humans (Spanoudakis et al., 2017).

Modern argumentation-based cognitive assistants
serve users by learning from them their habits and
preferences. They are capable of common sense rea-
soning and sense the users’ environment in order to
gather as much information as possible before choos-

a https://orcid.org/0000-0002-4957-9194

ing a course of action (Kakas and Loizos, 2016; Costa
et al., 2017).

There is a number of software libraries (Cerutti
et al., 2017) for developing applications of argu-
mentation, e.g., Gorgias (Kakas and Moraitis, 2003),
CaSAPI (Gaertner and Toni, 2007), DeLP (Garcı́a
and Simari, 2004), ASPIC+ (TOAST system) (Snaith
and Reed, 2012) and SPINdle (Lam and Governatori,
2009), however, these require a substantial logic pro-
gramming effort by experts.

Recently, the Gorgias-B (Spanoudakis et al.,
2016) Java-based tool offered a higher level develop-
ment environment aiding the user to develop a deci-
sion policy. Gorgias-B is built on top of the Gorgias
framework and, on one hand, aids in the elicitation
of the expert/user knowledge in the form of scenario-
based preferences among the available options, and,
on the other hand, automatically generates the cor-
responding executable Gorgias code. Moreover, the
Gorgias-B tool supports scenario execution that helps
the user to put to test the generated argumentation the-
ory.

However, Gorgias-B still needs the user to fol-
low an argumentation domain specific method and
have knowledge of Prolog style logic programming
application development. Moreover, its use requires a

286
Spanoudakis, N., Kostis, K. and Mania, K.
Web-Gorgias-B: Argumentation for All.
DOI: 10.5220/0010269402860297
In Proceedings of the 13th International Conference on Agents and Artificial Intelligence (ICAART 2021) - Volume 2, pages 286-297
ISBN: 978-989-758-484-8
Copyright c© 2021 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



complex installation process including the installation
of Java and SWI-Prolog.

A web-based system, SPINdle (Lam and Gover-
natori, 2009), allows for web-based development and
testing of defeasible logic applications. Its environ-
ment, however, just includes a text editor for writing
logic programming rules.

In this paper, we propose a web application,
named Web-Gorgias-B. Our aim is to eliminate the
need for logic programming knowledge for applica-
tion developers, thus, allowing even naive users to
define decision policies. Moreover, we produce, for
the first time, an implementation of the table formal-
ism, that has been recently proposed in the litera-
ture (Kakas et al., 2019), enabling naive users to de-
fine their scenarios and select the available options in
each scenario.

During system development, we evaluated our
proposed system using the think aloud protocol (Mc-
Donald and Petrie, 2013) involving naive and expert
users in order to evaluate its performance in a qual-
itative manner. Following that, useful features such
as tips that help the accomplishment of each appli-
cation task, or the size, colors and layout of original
controls were determined. All developed policies are
stored in the cloud, so that they can be edited, demon-
strated or executed at the user’s convenience. Lastly,
we employed a formal evaluation method based on
the System Evaluation Scale (SUS) (Bangor et al.,
2009) to quantify the system’s usability and identify
its strengths and weaknesses.

This paper extends a short paper published re-
cently (Spanoudakis et al., 2020). The original con-
tent herein is the presentation of the two new features
(not referred to in the short version), a) the impossible
scenario feature and b) the ability to define options in
scenarios as default. It also presents the algorithms
and the evaluation using SUS.

In the following sections we first discuss back-
ground, define standard argumentation concepts and
what is already possible with the Gorgias-B tool.
Then, we discuss the goals we set in this work to ad-
vance the state of the art, before outlining the system’s
architecture. Subsequently, we focus on the technical
contribution. Finally, we discuss the thorough system
evaluation conducted.

2 BACKGROUND AND RELATED
WORK

We will present the Gorgias-B tool as our background,
along with the SPINdle tool, the only other tool for

developing defeasible logic-based decision theories,
as related work.

2.1 SPINdle

SPINdle is a logic reasoner that can be used to com-
pute the consequence of defeasible logic theories in
an efficient manner (Lam and Governatori, 2009).
This implementation covers both the basic defeasi-
ble logic and modal defeasible logic. SPINdle can
also be used as a standalone theory prover or as an
embedded reasoning engine. SPINdle’s user interface
can be characterized as too poor with only one text-
area, where users define their arguments and defeasi-
ble facts. In order to define these, the user has to be
knowledgeable of defeasible logic and its syntax. It is
prohibitive to naive users who cannot efficiently use
this tool.

2.2 Gorgias-B

The Gorgias-B tool is based on the Gorgias Argumen-
tation framework, which is written in Prolog (Kakas
and Moraitis, 2003). It employs a Graphical User
Interface (GUI) written in Java and encapsulates the
essential features of the Gorgias framework, hiding
from users the underlying technology. Therefore,
users do not have to be experts in argumentation.
However, they need to be familiar with the Prolog lan-
guage and its syntax.

The Gorgias-B tool has been based on a system-
atic methodology for developing hierarchical argu-
mentation frameworks applications. Hierarchical Ar-
gumentation Frameworks (HAF) allow developers to
not only define preference among arguments, but also
to define preference on preferences, thus, allowing to
have default preferences but also context based pref-
erences (Modgil, 2006). The following example will
help the reader familiarize with the terms option, fact,
belief, preference and argument rule, concepts that
are important for further reading.

Working with Gorgias-B, a decision problem is
defined as the process of choosing the best option
oi, i ∈ {1, ..,n} among the set O of n available options.
For the better understanding of our work, we will il-
lustrate a working example that will be used through-
out the paper. An interested reader can compare the
process here with the one followed by Gorgias-B for a
quite similar example 1. In that example, Ralf, a pro-
fessional, defines the decision policy for his phone’s
cognitive assistant. The available options for our ex-
ample are:

1http://gorgiasb.tuc.gr/Tutorial3.html#ca

Web-Gorgias-B: Argumentation for All

287



o1 = allow(call) (1)
o2 = deny(call,without explanation) (2)
o3 = deny(call,with explanation) (3)

In the paper, we will use the same notation with
the one used by the authors of the paper that set
the theoretical foundation of the table-based argu-
mentation theory generation (Kakas et al., 2019).
We will also use abbreviated symbols of predicates
and ground atoms in order to save space and not
clutter the equations, e.g. we will use o1 instead
of allow(call). To choose among the options we
define scenario-based preferences, using the syntax
SPlevel

scenario = 〈Slevel
scenario;Olevel

scenario〉:

SP1 = 〈S1 = {true};O1 = {o1,o2,o3}〉 (4)

where SP1 is the scenario-based preference of level
one, where scenario S1 holds and all three available
options are acceptable. Note that we have omitted the
scenario subscript as the scenario doesn’t have any
conditions (i.e. is true). In the Gorgias hierarchi-
cal argumentation framework, argument rules link a
set of premises with their position. An argument is
a set of one or more such argument rules, denoted
by Label = Conditions�Position. Such an argument
rule links a set of Conditions with a Position. The SP
in (4) implies the following object level arguments:

argSP1

o1
= {true}�o1 (5)

argSP1

o2
= {true}�o2 (6)

argSP1

o3
= {true}�o3 (7)

where argSP1
o2

is a label for the object level argument
for the scenario preference of option one at level one,
see expression (4). An object level argument links
conditions (or premises) to its position. The premises
are those that unlock the supported position. More
context may be added later as we will see. In this
case, the semantics behind the object level arguments
of our example is that when there is a new incoming
call, then Ralf’s assistant can select any one of the
three options (credulously).

We can also use the “>” operator between two
argument rules’ labels to denote that the one on the
left hand side is preferred over the one on the right
hand side. This operator assigns preference over other
rules. When the labels are of object-level rules (at the
first level) then we have a preference at the second
level. When the labels are of nth level rules then we
have a preference at level (n+ 1). The following ex-
ample shows how to connect a Scenario Preference
(SP) to arguments generation:

SP2
f ,f = 〈S2

f ,f = S1∪C2
f ,f = {true}∪{family time,

family call};O2
f ,f = {o1}〉 (8)

SP2
f ,bu = 〈S2

f ,bu = S1∪C2
f ,bu = {true}∪{family time,

business call};O2
f ,bu = {o1,o2}〉 (9)

SP3
f ,bu,bo = 〈S3

f ,bu,bo = {family time,business call,

call from boss};O3
f ,bu,bo = {o1}〉 (10)

arg
SP2

f ,f
o1 over o2 ={family time, family call}�

argSP1

o1
> argSP1

o2
(11)

arg
SP2

f ,f
o1 over o3 ={family time, family call}�

argSP1

o1
> argSP1

o3
(12)

arg
SP2

f ,bu
o1 over o2 ={family time,business call}�

argSP1

o1
> argSP1

o2
(13)

arg
SP2

f ,bu
o1 over o3 ={family time,business call}�

argSP1

o1
> argSP1

o3
(14)

arg
SP2

f ,bu
o2 over o1 ={family time,business call}�

argSP1

o2
> argSP1

o1
(15)

arg
SP2

f ,bu
o2 over o3 ={family time,business call}�

argSP1

o2
> argSP1

o3
(16)

arg
SP3

f ,bu,bo
o1 over o2 ={call from boss}�

arg
SP2

f ,bu
o1 over o2 > arg

SP2
f ,bu

o2 over o1 (17)
Argument rules (11) and (12) are implied by the sce-
nario preference (8), where only o1 is acceptable, i.e.
Ralf wants his phone to ring, if there is an incom-
ing call from his family members when spending time
with his family. Note that the premises (or conditions)
of argument rule (11) are two facts, i.e. family time
and family call. Similarly, argument rule (12) is sup-
ported by the family time and family call facts.

Rules (13)-(16) are implied by the scenario prefer-
ence (9), as only options o1 and o2 are allowed in the
scenario. Both are preferred to the other arguments
of level one, indicating that when Ralf spends some
time with his family he never explains in a text mes-
sage his situation to callers related to his work (he
either replies or denies the call without explaining the
reason for doing so). In the third level scenario (10),
however, only o1 is allowed, i.e. when it is his boss
that is calling he will answer the phone, therefore the
preference in formula (17) is added.

Object level rules can take along priority rules
to build stronger arguments. In Gorgias (Kakas and

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

288



Moraitis, 2003), which is based on Dung’s abstract
argumentation framework (Dung, 1995), we have a
set of arguments Arg and the Att attack binary rela-
tion between them. An argument attacks another if
they draw complementary conclusions (options). An
argument that attacks back all its attackers is an ad-
missible argument. Thus, when Ralf spends family
time and there is an incoming call from his boss a
number of arguments can be constructed, however the

{argSP1
o1

,arg
SP2

f ,bu
o1 over o2 ,arg

SP3
f ,bu,bo

o1 over o2} is the only admis-
sible (i.e. no other company of argument rules can
fight it back). An interested reader can find the de-
tailed semantics and formal definition of the Gorgias
framework in the work of Kakas and Moraitis (Kakas
and Moraitis, 2003).

Gorgias-B (Spanoudakis et al., 2016) guides the
user in defining object-level arguments and then al-
lows users to define priorities among them in the sec-
ond level. If there are contrary priorities then they are
resolved in a next level, and this process iterates until
there are no conflicts.

Recently, researchers defined a table formalism
for capturing requirements and a basic theoretical
algorithm for generating code for refined scenar-
ios (Kakas et al., 2019). Refined scenarios are con-
tinuously advancing in levels by adding more specific
contextual information.

3 PROBLEM STATEMENT:
MOTIVATION

Our work proposes an implementation for the table
view recently presented by researchers in a theoret-
ical paper (Kakas et al., 2019). The main key fea-
ture introduced is the Argue Table, where users can
review their scenario preferences in a more respon-
sive and clear way. This feature is expected to benefit
users in creation of arguments and definition of option
properties. Also, from the table view, users are able
to expand and refine their already created scenario
preferences by adding new facts and beliefs that they
would like to include into their new scenarios. The
implementation posed specific challenges and was not
straight forward as the algorithm presented by the au-
thors that introduced this formalism only works for
refining a single scenario (Kakas et al., 2019). We
found out that there were quite some challenges in
generating code when there are default options in a
given scenario (an original feature proposed in this
paper, see next paragraph) and then new information
extends that given scenario, or when scenarios can be
combined. We present the algorithms that we devel-

oped in Section 4.2.
Furthermore, in the Argue Table we introduce two

new features, a) the impossible scenario feature and
b) the ability to define options in scenarios as default.
The second is the one with more technical interest for
the Knowledge Representation and Reasoning com-
munity. Users can define options as default at each
particular scenario. For example, Ralf might want to
define that even though it is possible for a business
call to be answered while he is spending time with his
family, his default response is to deny the call. Thus,
only if it is the case of the boss calling, whose call
is also a business call, and, thus, a more specific sce-
nario related to the previous one, is a reply possible.
This functionality is impossible with the existing form
of scenario-based preferences.

If we removed o1 from SP2
f ,bu, then formulas (13)

and (14) would not have been generated, and, thus,
in the next refinement of the scenario, they would not
be there for the call from boss context to give them

priority. Thus, we would have to define arg
SP3

f ,bu,bo
o1 over o2

as a new scenario in level two arg
SP2

f ,bu,bo
o1 over o2 . In that

case, as his boss is also a business associate, then both

arg
SP2

f ,bu,bo
o1 over o2 and arg

SP2
f ,bu

o2 over o1 would be admissible for
an incoming call from his boss and his personal as-
sistant might select to deny the call. Of course there
could be a true scenario in the next level clarifying

the situation, i.e. arg
SP3

f ,bu,bo
o1 over o2 , however, this approach

would clatter the table formalism as the same scenario
would have to appear to a next level, thus effectively
confusing the naive user.

This example, which motivates our work is not
just a possible theoretical case but a real-world re-
quirement. It comes from consulting users that want
to define their policies to create applications of argu-
mentation. For example, Pison (Pison, 2017), a highly
qualified ophthalmologist doctor of a public hospi-
tal in Paris (France), proposed the development of an
eye-clinic support system based on the set of known
ocular diseases (there are more than 80). The differ-
ent diseases are the available options in the decision
policy. The use of tables provided a compact repre-
sentation of the expert knowledge and one she could
use as a naive user. The manual translation of the ta-
ble (provided in spreadsheet format) to a Gorgias de-
cision theory was a tedious task that has taken many
months, done by an expert who used the Gorgias-B
tool. A prototype web application is under develop-
ment using hundreds of scenarios with the prospect
of being deployed in the collaborating eye clinic as
a commercial product. The automatic translation of
the scenarios to an argumentation theory would save

Web-Gorgias-B: Argumentation for All

289



many work hours and prevent human errors.
Another problem is that to install the Gorgias-B

application is difficult as it requires the installation of
a number of tools (Java, SWI-Prolog) and the edit-
ing of a configuration file, restricting its use to expe-
rienced users. We want to make the decision policy
development capability available to naive users, i.e.
users without technical knowledge of logic program-
ming, or of managing complex configuration files re-
quiring paths to installed software libraries .

Therefore, we set forward with the hypothesis that
if we undertook these tasks we would develop a sys-
tem useful even for non-experts to define their deci-
sion policy using argumentation.

4 SYSTEM ARCHITECTURE

We provide an overview of the system architecture
in Subsection 4.1. This Subsection is quite technical
and of more interest to colleagues with experience in
the software engineering and/or web interface devel-
opment areas. Then, in Subsection 4.2, we focus on
the functionality of the Scenario service, which of-
fers most of the innovative features of the system and
which is the most interesting for the Knowledge Rep-
resentation and Reasoning community.

4.1 Overview

The overall application was designed to take advan-
tage of the principles and benefits of the Model-View-
Controller (Leff and Rayfield, 2001) (MVC) design
pattern (see Figure 1). This means that distinct mod-
ules are created to control the presentation of the data,
filtering it according to the user’s criteria and manag-
ing it in a data model. CRUD (Create, Read, Update,
Delete) services provide access to the database.

Figure 2 shows the generated data that are trans-
mitted through a REST service (Pautasso et al., 2008)
at system Model level, where they are stored for use
in queries that will result in their execution in Prolog
environment and the return of the result.

4.1.1 Client Side

The client-side application employs technologies that
can run on any standard browser without the need
for any additional software (such as a runtime envi-
ronment). More specifically, we employed HTML5
(https://www.w3.org/TR/html/), CSS3 (https://www.
w3.org/TR/CSS) and Angular (https://angular.io/).

Figure 1: Application’s main design model.

Figure 2: Application’s distinct modules design.

4.1.2 Server Side

The ScenarioService is implemented in the
Spring Boot framework (https://spring.io/projects/
spring-boot). The functionality of the developed
application that refers to scenarios is implemented
in this service. This service is described in detail in
Section 4.2.

The Prolog Service is implemented by the
Spring-Boot programming framework. The user’s

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

290



Figure 3: Core NLP text transform. Each of the three num-
bered cells are translated to the corresponding option of our
example.

decision model is defined using the concepts and data
structures presented in Section 2.2. The Eclipse EMF
(http://eclipse.org) technology, together with its xtext
extension (Eysholdt and Behrens, 2010), provides
automated Prolog code generation for the Gorgias
theory. To establish a connection between Prolog and
Spring Boot we use the Java-Prolog Interface (JPL)
library (Ali et al., 2016). The Prolog Service contains
all the functions needed to instantiate and execute
each project in Prolog.

All the other functionalities are implemented as
RESTful services (Pautasso et al., 2008). Represen-
tational State Transfer (REST) is a software archi-
tectural style that defines a set of constraints to be
used for creating web services. RESTful services are
bound by the principle of statelessness, which means
that each request from the client to server must in-
clude all the details to understand the request. This
improves visbility, reliability and scalability for re-
quests.

The CoreNLPService was also implemented us-
ing the Spring-Boot framework. In order to achieve
the main functional requirements of creating a user-
friendly GUI, easy to use by non-expert users, dif-
ficult and complex Prolog elements, such as predi-
cates should be visualised in another way. The main
idea is to let the user write in a free form text, and
then, after applying an appropriate Natural Language
Processing (NLP) method, automatically transform it
into Prolog’s predicate form. Or, in other words, the
goal is to extract a predicate from free text in a way
that ensures almost complete acquisition of predicate-
argument structures from text. We consider extraction
of predicate-arguments, structures from a single text
with a substantial narrative part.

Verbs play a fundamental role in NLP, so verb in-
formation in lexicons is essential. A verb as a predi-
cate identifies a relation between entities denoted by
the subjects and complements. So, the CoreNLPSer-
vice, utilizing the power of Stanford’s coreNLP
tool (https://nlp.stanford.edu/software/), processes

Table 1: Argue table for Call Assistant example. Lower
case “x” denotes that the option in the column is valid
within the scenario and upper case “X” denotes a default
option.

Scenarios Options
o1 o2 o3

1 S1 = {true} x x x
2 S2

f , f = { f amily time, f amily call} x
3 S2

f ,bu = { f amily time,business call} x X
4 S3

f ,bu,bo = S2
f ,bu∪{ f rom boss call} x

the given sentence and analyzes the entity relation of
the sentence by verb. When the syntactical analysis
completes, entities are transformed into word func-
tions as presented in Figure 3. The abstract form
of representation is verb(sub ject,ob ject,nouns) with
minor changes per input. This transformation is pre-
sented to user to approve it or to adjust it.

The Database Service: was implemented with
a NoSQL family database system. The open-
source MongoDB database was selected (https://
www.mongodb.com/. MongoDB is used to store eight
types of Collections:

• User Data:, the user access credentials

• Project:, a user can have zero or more projects
that have:

– Options, Complements: (i.e. incompatible
options), Facts, Beliefs2), Argument Rules,
and, Impossible Scenarios in real-life applica-
tions

4.2 ScenarioService

The ScenarioService includes the functions needed to
group all the created scenarios, by their name, in a
table view. Table 1 shows the scenarios presented in
Section 2. It includes a notation (bold, uppercase let-
tering) for allowing to define default options at each
Scenario. The graphical user interface (GUI) of the
Web-Gorgias-B application includes the Argue Table
view. The reader will have the chance to see how the
theoretical view presented in Table 1 looks in the de-
veloped system in Section 5 and in Figure 5.

There is a function to create a scenario preference
based on selected beliefs and facts, accompanied

2Sometimes the premises of arguments are themselves
defeasible. We call them beliefs, and they can a) be argued
for or against, i.e. the position of an argument can also be
a literal on a belief, or b) be assumed. In the latter case,
they are called abducibles. The only restriction posed by
our framework for beliefs is that when they are the position
of an argument rule, the premises supporting it cannot hold
option predicates. An interested reader can refer to Kakas
and Moraitis (Kakas and Moraitis, 2003) for more details.

Web-Gorgias-B: Argumentation for All

291



with the appropriate option(s). Whenever the user
adds a line to the table, the expandScenario function
is called. This function implements Algorithm 1. So,
for each selected option o, the algorithm searches
the previous level for arguments for and against that
option. Then it creates new arguments at the current
level preferring the arguments for that option to the
arguments against that option. As previously stated,

Algorithm 1: Central algorithm for refining a scenario.

Function expandScenario(SPlvl
x ,de f aults):

1 for each o ∈ Olvl
x do

2 for each arg
SPlvl−1

x′
o over o′ ,x

′ ⊂ x do

3 for each arg
SPlvl−1

x′
o′ over o do

4 if complements(o,o′) then
5 create argSPlvl

x
o over o′ =

(Slvl
x −Slvl−1

x′ )�

arg
SPlvl−1

x′
o over o′ > arg

SPlvl−1
x′

o′ over o
end

end
end

end
6 call insertPreference(SPlvl

x ,defaults)
7 call autoCorrectArgs(SPlvl

x )

one of the innovations that this implementation offers
is the function for users to give to an option higher
priority over all others at a scenario. Algorithm 2 is
called for defining default options. The algorithm
searches for argument rules of a specific scenario S,
whose non-preferred option is the one that the user
wants to define as default. Then, for each of these
arguments, the algorithm creates a counter-argument
at a higher level, by setting higher priority for the
default option and the context to true.

Algorithm 2: Central algorithm for inserting a default pref-
erence for an option.

Function insertPreference(SPlvl
x ,de f aults):

1 for each o ∈ de f aults, do
2 for each o′,argSPlvl

x
o′ over o do

3 if @argSPlvl+1
x

o over o′ then
4 create argSPlvl+1

x
o over o′ = {true}�

argSPlvl
x

o over o′ > argSPlvl
x

o′ over o
end

end
end

Due to the possibility of the existence of default
options in the scenarios examined, to avoid conflict-

ing preferences, a correction algorithm is executed
to correct possible mistakes about hierarchies (see
Algorithm 3).

Algorithm 3: Central algorithm for correcting arguments
after scenario refinement.

Function autoCorrectArgs(SPlvl
x ):

1 for each x′,SPlvl
x′ ,x

′ ⊂ x do
2 for each

arg
SPlvl

x′
o′ over o,conditions(arg

SPlvl
x′

o′ over o) =
{true} do

3 for each

argSPlvl
x

o over o′ ,conditions(argSPlvl
x

o over o′) 6=
{true} do

4 create argSPlvl+1
x

o over o′ = {true}�

argSPlvl
x

o over o′ > arg
SPlvl

x′
o′ over o

end
end

end

Given the example shown in Table 1 and having
created the object level rules for each option, when
a user tries to expand the newly created scenario
to produce the second line (2) of the table, the
expandScenario function (shown in Algorithm 1) is
called:

expandScenario(SP2
f , f ,∅)

and the arguments that it generates are the ones
in formulas (11)-(12). There are no default ar-
guments, and no default priorities for previous
defaults at the second level. Then, as soon as the
user completes the third line (3) of the table, the
expandScenario function is called again:

expandScenario(SP2
f ,bu,{o2})

and the arguments that will be generated are the
ones in formulas (13)-(16). After the arguments
are generated the insertPreference function will be
invoked in line 6 of Algorithm 1. This time there is a
default option, o2, and the following argument rule
will be created:

arg
SP3

f ,bu
o2 over o1 ={true}�arg

SP2
f ,bu

o2 over o1 > arg
SP2

f ,bu
o1 over o2

(18)

Finally, the user defines line 4 of Table 1. The
expandScenario function is called again:

expandScenario(SP3
f ,bu,bo,∅)

and the argument that will be generated is the

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

292



one in formula (17). This time there is no default
option, however, the invocation of the autoCorrec-
tArgs function in line 7 of Algorithm 1 will produce
an argument rule, as there was a default preference at
the previous level and formula (18):

arg
SP4

f ,bu,bo
o1 over o2 ={true}�arg

SP3
f ,bu,bo

o1 over o2 > arg
SP3

f ,bu
o2 over o1

(19)

4.2.1 Other Features of the ScenarioService

Multiple scenarios may have common elements and
can also be combined, which results in possible con-
flicts between the available options of each one.
These conflicts are automatically presented to the user
in Argue Table, in order to make a decision for these.
Thus, normally, as soon as the user enters line 3 of
Table 1 then a line not shown in the table will be au-
tomatically proposed to the user to select the avail-
able options combining the lines 2 and 3 contexts,
i.e. { f amily time, f amily call,business call}. Web-
Gorgias-B allows the user to mark this scenario as
impossible and from then on it is no longer proposed.

Furthermore, when a user selects a scenario to ex-
pand, e.g. Slvl

x , to define the scenario preferences of
Slvl+1

x′ the user must select the conditions that apply
(the user is not allowed to select conditions already in
x) and, thus, add context to x and define x′. We say
that x′ is a refinement of x. Then the user is asked to
select the valid options among those in Olvl

x .
Web-Gorgias-B allows the user to validate her de-

cision policy using the Execution view. In that view,
the user selects the appropriate context for the sce-
nario she wants to instantiate by choosing among the
facts that she has defined. Then, the user can ei-
ther test the applicability of all the defined options
in that scenario, or just test a specific option. The
Web-Gorgias-B tool transforms the user policy model
to a Gorgias theory and executes the relevant Prolog
query. Then it shows the results to the user. See the
execution of one scenario for our example in Figure 6.

5 EVALUATION

A thorough multi-level evaluation was conducted.
Evaluation consisted of two stages; initially employ-
ing think-aloud evaluation protocol (McDonald and
Petrie, 2013) and, lastly, evaluation of the system
based on a standard usability scale, in our case, the
System Usability Scale (SUS) (Bangor et al., 2009).
In both stages, most users were non-experts in logic
programming.

In this section we will also include screenshots
and material from our working example development

process using Web-Gorgias-B, so that the reader can
also evaluate this work.

5.1 Think Aloud Evaluation

Thorough evaluation, both informal and structured,
was conducted so that the system’s usability was as-
sessed during the system’s development. Various user
comments were integrated in the user interface design
throughout its implementation. The think aloud pro-
tocol was selected as the main evaluation methodol-
ogy because of the complexity of the system and the
need to allow for free-form conversation between the
user and the researcher guiding the evaluation (Mc-
Donald and Petrie, 2013).

The think aloud protocol involves performing cer-
tain sets of actions, while at the same time users ex-
press aloud any thoughts in relation to their expe-
rience interacting with a system or a user interface.
Users are instructed to express aloud potential usabil-
ity difficulties and, in general, state how they feel
while using a system. Observers record the users’ in-
teractions by taking notes or capturing videos after
relevant permissions have been acquired. System de-
velopers use the video to transcribe how users reacted
to what they were asked to do, combined with detailed
and time-stamped user logs. This way, a complete
picture is formed in relation to the functionalities to
be developed and improved, as well as on the design
and organization of user interface elements.

At a primary stage a detailed think-aloud pro-
tocol was applied to three users; two expert design-
ers of web sites and a technically competent com-
puter engineering student, all with minimal experi-
ence of logic programming and argumentation frame-
works. The two expert web designers focused on
suggesting simplifications of the user interface, but
also complementing it with additional elements when
needed (Petrie and Power, 2012). They advised how
to enhance the ease of navigating the application and
prompted a change of position of the side column
which includes the derived results. The designer no-
ticed the lack of a help section and proposed to add
at each page a help button containing tips accompa-
nied with simple examples, in order to guide the users
when using the application. They influenced the way
that the NLP functionality would aid the predicates
definition process (see Figure 4).

Lastly, the information and the tabs included in the
web application were reported as potentially too many
and complex. The solution to this problem was to
create two custom views. One for naive users and one
for expert users (see the slider that switches between
the views in Figure 5 just below the question mark).

Web-Gorgias-B: Argumentation for All

293



Figure 4: Automatically proposing the predicate structure
based on natural language input. The user writes the op-
tion in natural language, in this case “deny the call without
explanation”. Then, by pressing enter in the keyboard or
the Preview button, the system proposes a structure for the
predicate, in this case “deny(call, without explanation)”.
The user can accept it by pressing the Yes button, clear it
by pressing No, or edit it by pressing Edit.

When the final system was completed, a thorough fi-
nal evaluation was also conducted by asking users to
browse the web pages in succession. The first eval-
uation was conducted by a user interface developer
with extensive experience in web design and develop-
ment. His comments moved around the aesthetics of
the pages, their colors and functionality.

The second evaluation was conducted by a tech-
nically proficient undergraduate student who focused
on the application when it is run on a mobile phone.
He suggested changes in the layout of the pages, so
that page content fits the screen size of mobile phone
screens. Furthermore, he indicated improvements in
relation to the text input forms as shown on a mobile
phone’s screen, so that it is easier to input text.

The third evaluation was conducted by an expert
user in argumentation and the Gorgias framework.
His suggestions enhanced the simplicity of the im-
plementation and the effectiveness of its functional-
ity. He observed that in certain cases, the automat-
ically generated scenarios based on the combination
of other scenarios that have conflicting options, may
have in their context, facts or beliefs that are objec-
tively impossible to happen. To overtake this situa-
tion, he proposed to add a button to define such sce-
narios as impossible and then hide it from the Argue
Table View (this view for our working example is pre-
sented in Figure 5). Furthermore, it was noted that
certain help messages and labels of form inputs were
misleading and needed clarity. He also proposed to
add floating notifications to all pages, informing users
about the progress of their requests.

User interface improvements suggested by all re-
viewers were applied. Evaluators were invited to re-
assess the improved usability of the system based on

the think-aloud protocol. Evaluators were generally
satisfied by the overall usability of the system.

For the interested reader we provide the Gorgias
rules that were automatically generated for the exam-
ple shown in Figure 5 3:

rule(r1(call), allow(call), []).
rule(r2(call, with_explanation),
deny(call, with_explanation), []).

rule(r3(call, without_explanation),
deny(call, without_explanation), []).

rule(p1(call), prefer(
r1(call),r2(call, with_explanation)), [])
:-family_time, family_call.

rule(p2(call), prefer(
r1(call), r3(call, without_explanation)), [])
:-family_time, family_call.

rule(p3(call), prefer(
r1(call), r2(call, with_explanation)), [])
:-family_time, business_call.

rule(p4(call), prefer(
r1(call), r3(call, without_explanation)), [])
:-family_time, business_call.

rule(p5(call, without_explanation), prefer(
r3(call, without_explanation), r1(call)), [])
:-family_time, business_call.

rule(p6(call, without_explanation), prefer(
r3(call, without_explanation),
r2(call, with_explanation)),[])
:-family_time, business_call.

rule(c1(call, without_explanation), prefer(
p5(call, without_explanation), p4(call)),[]).

rule(c2(call), prefer(
p4(call), p5(call, without_explanation)), [])
:-from_boss_call.

rule(c3(call), prefer(
c2(call), c1(call, without_explanation)),[]).

5.2 Usability Evaluation based on the
System Usability Scale (SUS)

In order to introduce the innovative features of Web-
Gorgias-B and formally evaluate its interface, we also
conducted a usability test to explore usability of the
system and potential issues. We employed the Sys-
tem Usability Scale (SUS) widely employed in liter-
ature for interface evaluation (Brooke, 1996). SUS
has become an industry standard with more than 500
systems tested with it (Klug, 2017). When SUS is
used, participants are asked to score the following 10
items, selecting one of five responses in a Likert scale
that ranges from Strongly Agree to Strongly disagree:

Q1 I think that I would like to use this system fre-
quently.

3Explaining the Gorgias rules syntax is out of the scope
of this paper, the interested reader can consult the Gor-
gias (http://www.cs.ucy.ac.cy/∼nkd/gorgias/) or Gorgias-B
(http://gorgiasb.tuc.gr/) sites.

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

294



Figure 5: Argue Table View. The check sign indicates valid options and the Default indication on the upper right corner of
the cell defines the option as default. In the screenshot we see the Basic View of the requirements presented in Table 1.

Figure 6: Execution View. The user has added to the simulated scenario three conditions that apply, i.e. family time, busi-
ness call, from boss call and after clicking the “Explore All Options” button, the only applicable option is to allow(call).

Q2 I found the system unnecessarily complex.

Q3 I thought the system was easy to use.

Q4 I think that I would need the support of a tech-
nical person to be able to use this system.

Q5 I found the various functions in this system
were well integrated.

Q6 I thought there was too much inconsistency in
this system.

Q7 I would imagine that most people would learn
to use this system very quickly.

Q8 I found the system very cumbersome to use.

Q9 I felt very confident using the system.

Q10 I needed to learn a lot of things before I could
get going with this system.

We organized the experiment in our laboratory and we
invited users associated with our research laboratories
at the Technical University of Crete, who were, how-
ever, naive in relation to the system’s goals. Seven
members of our teaching staff, five post-graduate stu-
dents and three undergraduate students volunteered
and participated in this formal usability study. Two
of the research staff were AI professors who hadn’t
used the system but understood the basic principle of
argumentation. The remaining participants were not
experts in AI, nor was AI their research field. All the
participants followed a 10-minute tutorial on the use

Web-Gorgias-B: Argumentation for All

295



of Web-Gorgias-B 4. Afterwards, they were able to
ask any questions they had. Then, we asked them to
author another decision policy, of similar difficulty to
the one created in the tutorial, using Web-Gorgias-B
all by themselves. All the participants successfully
authored their policy. The requested decision pol-
icy may seem simple but it is a situation occurring
in the real world and adopted by other researchers for
showing cases of argumentation-based decision mak-
ing (Kakas and Moraitis, 2006). Moreover, this exam-
ple includes the usage of all the innovative features of
Web-Gorgias-B.

Subsequently, they responded to the above ques-
tions using a Likert scale ranging from 1 to 5 with 1
signifying “strongly agree” and 5 “strongly disagree”.
The relevant statistics are presented in Figure 7. For
odd questions the favorable results are towards “1”
and in even questions towards “5”. It is worth noticing
that the boxplot for question 7, regarding how quickly
someone can learn the system, has limited negative
responses as three quarters of users agree that the
system was very easy to learn. Other favourable re-
sponses indicated that the system was not unnecessar-
ily complex (Question 2) or cumbersome (Question
8) and overall, proved to be quite consistent (Ques-
tion 6).

●●

●

●●

●

●

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

1
2

3
4

5

1:
 s

tr
on

gl
y 

ag
re

e 
.. 

5:
 s

tr
on

gl
y 

di
sa

gr
ee

Figure 7: Responses boxplots for the 10 questions of our
survey. The boxplots were created using R.

Finally, the results were summed up and the
SUS score was calculated as an average of their
scores (Brooke, 1996). The statistics for the SUS
score are given in the boxplot in Figure 8. The average
SUS score from all past studies is 68. A SUS score
above a 68 would be considered above average (Klug,

4The interested reader can follow a video tutorial show-
ing the functionality of the developed system for authoring
a simple decision policy: https://youtu.be/T9nBk1h20Xs.

0
20

40
60

80
10

0
0

20
40

60
80

10
0

Figure 8: The boxplot of the SUS score of our survey.

2017), thus, we can support the hypothesis that our
Web-Gorgias-B system usability is above average as
the mean value of our sample is 69.33 (median: 70,
standard deviation: 16.73).

6 CONCLUSION

The objective of this paper was to implement a web-
based application for decision policy definition and a
simulation application for the Gorgias argumentation
framework. The main goal of creating a web inter-
face was accomplished, easily accessible by the gen-
eral public. The software was designed to incorporate
cutting-edge technologies and programming frame-
works, handle a large volume of transactions and be
compatible with both desktop and mobile devices.
The architectural components were described and the
functionality of the system was evaluated using the
think aloud protocol.

Moreover, we offer, for the first time, an
argumentation-based implementation of the table-
based requirements gathering formalism that was pro-
posed recently in the literature (Kakas et al., 2019).
Additionally, we proposed new features that allow
for better expressing the requirements of a decision
maker, mainly the ability to define a default option
in a scenario. Evaluation showcased that users with
mostly no argumentation experience learnt the system
quite quickly and mostly thought that it was simple
and consistent.

Future work is focused on allowing the user to de-
fine options in a scenario that are not present in previ-
ously selected scenarios. Moreover, and to allow for
large-scale application development, we will explore
ways to have different tables for all diverging contexts
so that the user can focus only on the branch of the
scenario that she currently refines. This way, Table 5
would, instead, be converted to two tables; one with
lines 1 and 2 and one with lines 1, 3 and 4.

ICAART 2021 - 13th International Conference on Agents and Artificial Intelligence

296



REFERENCES
Ali, T., Najem, Z., and Sapiyan, M. (2016). Jpl : Implemen-

tation of a prolog system supporting incremental tabu-
lation. In Sixth International conference on Computer
Science and Information Technology (CCSIT 2016),
Zurich, Switzerland, January 02-03, 2016, pages 323–
338.

Bangor, A., Kortum, P., and Miller, J. (2009). Determin-
ing what individual SUS scores mean: Adding an
adjective rating scale. Journal of usability studies,
4(3):114–123.

Brooke, J. (1996). SUS-a quick and dirty usability scale.
In Jordan, P. W., Thomas, B., Weerdmeester, B., and
McClelland, I. L., editors, Usability Evaluation In In-
dustry, chapter 21, pages 189–194. CRC Press.

Cerutti, F., Gaggl, S. A., Thimm, M., and Wallner, J. P.
(2017). Foundations of implementations for formal
argumentation. The IfCoLog Journal of Logics and
their Applications; Special Issue Formal Argumenta-
tion, 4(8).

Costa, Â., Heras, S., Palanca, J., Jordán, J., Novais,
P., and Julian, V. (2017). Using argumentation
schemes for a persuasive cognitive assistant system.
In Criado Pacheco, N., Carrascosa, C., Osman, N.,
and Julián Inglada, V., editors, Multi-Agent Systems
and Agreement Technologies, pages 538–546, Cham.
Springer International Publishing.

Dung, P. M. (1995). On the acceptability of arguments and
its fundamental role in nonmonotonic reasoning, logic
programming and n-person games. Artificial intelli-
gence, 77(2):321–357.

Eysholdt, M. and Behrens, H. (2010). Xtext: implement
your language faster than the quick and dirty way.
In Proceedings of the ACM international conference
companion on Object oriented programming systems
languages and applications companion, pages 307–
309.

Gaertner, D. and Toni, F. (2007). Computing arguments
and attacks in assumption-based argumentation. IEEE
Intelligent Systems, 22(6):24–33.

Garcı́a, A. J. and Simari, G. R. (2004). Defeasible logic pro-
gramming: An argumentative approach. TPLP, 4(1-
2):95–138.

Kakas, A. and Moraitis, P. (2006). Adaptive agent nego-
tiation via argumentation. In Proceedings of the Fifth
International Joint Conference on Autonomous Agents
and Multiagent Systems, AAMAS ’06, page 384–391,
New York, NY, USA. Association for Computing Ma-
chinery.

Kakas, A. C. and Loizos, M. (2016). Cognitive systems:
Argument and cognition. IEEE Intelligent Informatics
Bulletin, 17(1):14–20.

Kakas, A. C. and Moraitis, P. (2003). Argumentation based
decision making for autonomous agents. In The Sec-
ond International Joint Conference on Autonomous
Agents & Multiagent Systems, AAMAS 2003, July 14-
18, 2003, Melbourne, Victoria, Australia, Proceed-
ings, pages 883–890. ACM.

Kakas, A. C., Moraitis, P., and Spanoudakis, N. I. (2019).
GORGIAS: Applying argumentation. Argument &
Computation, 10(1):55–81.

Klug, B. (2017). An overview of the system usability scale
in library website and system usability testing. Weave:
Journal of Library User Experience, 1(6).

Lam, H.-P. and Governatori, G. (2009). The Making of
SPINdle. In Paschke, A., Governatori, G., and Hall, J.,
editors, Proceedings of the 2009 International Sympo-
sium on Rule Interchange and Applications (RuleML
2009), pages 315–322, Las Vegas, Nevada, USA.
Springer-Verlag.

Leff, A. and Rayfield, J. T. (2001). Web-Application
Development Using the Model/View/Controller De-
sign Pattern. In 5th International Enterprise Dis-
tributed Object Computing Conference (EDOC 2001),
4-7 September 2001, Seattle, WA, USA, Proceedings,
pages 118–127. IEEE.

McDonald, S. and Petrie, H. (2013). The effect of global
instructions on think-aloud testing. In Proceedings of
the SIGCHI Conference on Human Factors in Com-
puting Systems, pages 2941–2944. ACM.

Modgil, S. (2006). Hierarchical argumentation. In Eu-
ropean Workshop on Logics in Artificial Intelligence,
pages 319–332. Springer.

Pautasso, C., Zimmermann, O., and Leymann, F. (2008).
RESTful Web Services vs. “Big” Web Services: Mak-
ing the Right Architectural Decision. In Proceedings
of the 17th international conference on World Wide
Web, pages 805–814. ACM.

Petrie, H. and Power, C. (2012). What do users re-
ally care about?: a comparison of usability problems
found by users and experts on highly interactive web-
sites. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 2107–
2116. ACM.

Pison, A. (2017). Développement d’un outil d’aide au
triage des patients aux urgences ophtalmologiques
par l’infirmière d’accueil à l’aide du système
d’argumentation Gorgias-B. Technical report, LI-
PADE, Paris Descartes University.

Snaith, M. and Reed, C. (2012). TOAST: online aspic+
implementation. In Computational Models of Argu-
ment - Proceedings of COMMA 2012, Vienna, Austria,
September 10-12, 2012, pages 509–510.

Spanoudakis, N., Kostis, K., and Mania, K. (2020). Argu-
mentation for all. In Proceedings of the 35th Annual
ACM Symposium on Applied Computing (SAC ’20),
pages 980–982, New York, NY, USA. Association for
Computing Machinery.

Spanoudakis, N. I., Constantinou, E., Koumi, A., and
Kakas, A. C. (2017). Modeling data access legislation
with gorgias. In International Conference on Indus-
trial, Engineering and Other Applications of Applied
Intelligent Systems, pages 317–327. Springer.

Spanoudakis, N. I., Kakas, A. C., and Moraitis, P. (2016).
Gorgias-B: Argumentation in Practice. In Computa-
tional Models of Argument - Proceedings of COMMA
2016, Potsdam, Germany, 12-16 September, 2016.,
pages 477–478.

Van Eemeren, F. H., Grootendorst, R., and Eemeren, F. H.
(2004). A systematic theory of argumentation: The
pragma-dialectical approach, volume 14. Cambridge
University Press.

Web-Gorgias-B: Argumentation for All

297


