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Abstract
This paper introduces an innovative gamified rehabilitation platform comprising of a mobile
game and a custom sensor placed on the knee, intended for patients that have undergone Total
Knee Replacement surgery, in collaboration with the General Hospital in Chania. Initial testing
of the system is conducted in the Hospital Orthopaedic Clinic, in collaboration with
Orthopeadic Surgeons and Physiotherapists. The application uses a single custom-made, light,
portable and low-cost sensor node consisting of an Inertial Measurement Unit (IMU) attached
on a lower limb in order to capture its orientation in space in real-time, while the patient is
completing a physiotherapy protocol. The aim is to increase patient engagement during
physiotherapy by motivating the user to participate in a game. The proposed sensor node
attached on the lower limb provides input to the gamified experience displayed on an Android
mobile device, offering feedback to the patient in relation to whether the performed exercises
were accurately conducted. A classification algorithm is proposed that automatically classifies
an exercise in real-time as correct or incorrect, according to physiotherapists’ set criteria. The
game projects a graphical image of the patient’s limb motion as part of a 3D computer graphics
scene. It then classifies the exercise performed during physiotherapy as accurately performed
or not and increases patient compliance via a reward system. Our goal is to reduce the need for
the physical presence of a physiotherapist by aiding the efficient performance of exercise
sessions at any location, e.g. at home, indoors and outdoors by just utilizing a light sensor and
an Android device. Initial testing of the application in the Chania’s General Hospital Ortho-
paedic Clinic, Greece, indicates that patient engagement is enhanced in most cases, even when
elderly patients are concerned.
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1 Introduction

The term ‘Serious’ applied to games denotes the application of gaming technologies and playful
design strategies to domains of society and culture that are traditionally not associated with
entertainment such as themedical domain.What sets SeriousGames (SGs) apart from entertainment
games is their focus on intentional learning outcomes which are measurable promoting sustained
changes in the attitude and performance of individuals. SG academic research, in combination with
several successful practical applications, promoted the ‘serious’ use of games to the forefront of the
agendas of diverse fields. SGs have been successfully employed to promote transformation of
processes and protocols to education, as well as practical training and medical activities [23, 33].
Among diverse areas, research has shown that SGs are effectively enhancing motivation as well as
efficiency of rehabilitation training [24, 35]. Research challenges that are still prominent in this area
include accuracy of training performance, accuracy of motion capture when sensors attached to
patients’ body are involved, efficient feedback to the doctor in clinical settings as well as to the
patient at home or in any location, portability of the training environment and implementation of
medical and physiotherapy protocols in SG training environments which are proven to be equally, if
not more efficient than traditional rehabilitation methods [19]. Portability is most often restricted to
either the home or clinical environment because of motion capture and other associated equipment.

The work presented in this paper puts forward the design and implementation of a custom-
made ultra-portable and low cost rehabilitation application intended for patients that have
undergone Total Knee Replacement (TKR) [7], using only an Android mobile device and a
small sensor placed on the patient’s limb to track movement (Fig. 1).

2 Motivation

The knee is the largest joint in the body. Healthy knees are essential in order to perform most
everyday activities. Knee components should work in harmony. Disease or injury can disrupt
this harmony, resulting in pain, muscle weakness and reduced function. When the compart-
ments of the knee are damaged, a total knee prosthesis may be necessary. The main cause of
need for a total knee prosthesis is Osteoarthritis [28]. There are external risk factors that can
cause knee osteoarthritis. For example, being overweight, having previous knee injuries, the
(partial) removal of a meniscus [3]. Other causes are rheumatoid arthritis, fractures and
congenital factors.

Fig. 1 Application Procedure. Motion data are sent to the mobile application and are visualized in a
virtual environment
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These conditions can effectively limit the joint’s Range of Motion (ROM). Range of
Motion is the measurement of movement around a specific joint or body part (Fig. 2). It is
measured in degrees from the center of the knee. ROM is measured using an instrument called
a Bgoniometer .̂ For instance, a completely straight knee joint measures 0° while a fully bent
knee clocks in at about 135° degrees of flexion.

TKR is the most effective way to relieve pain and restore function. The most common
reason for knee replacement is that other treatments such as weight loss, exercise/physical
therapy, medicines, and injections, have failed to relieve arthritis-associated knee pain. The
goal of knee replacement is to relieve pain, improve quality of life, and maintain or improve
knee function. The procedure is performed on people of all ages, with the exception of
children, whose bones are still growing. The most important reasons for total knee replacement
are significant pain and/or disability. Joint prosthesis is susceptible to wear and tear over time
and has a finite lifespan. Therefore, delaying knee replacement until it is absolutely necessary
is generally recommended by healthcare providers.

Total Knee Arthroplasty (TKA), also known as Total Knee Replacement (TKR), is one of
the most commonly performed orthopaedic procedures. As of 2010, over 600,000 total knee
replacements were being performed annually in the United States and were increasingly
common [21]. Among older patients in the United States, the per capita number of primary
total knee replacements doubled from 1991 to 2010 from 31 to 62 per 10,000 Medicare
enrollees annually. The number of total knee replacements performed annually in the United
States is expected to grow by 673% to 3.48 million procedures by 2030. After total knee
replacement, interventions including physiotherapy and exercise show at least short-term
improvements in physical function [1]. If the patient fails to perform the exercises appointed
by the physiotherapist during this recovery period, an, otherwise, technically accurate opera-
tion might result in poor functional outcome leading to reduced ROM and quality of life.

The aim of the gamified rehabilitation system proposed is to motivate the patient to exercise
efficiently by providing feedback to the patient in relation to performance, while the physio-
therapy exercises are performed in any setting, e.g. clinical, at home, indoors, outdoors or even
in public areas. There is consistent evidence that supervised programs are not superior to
home-based programs in uncomplicated patients after TKA [14]. Important success factors for
home-based programs is to include patients with a favourable prognosis and increasing
adherence to the program, for instance by tele-rehabilitation [32].

There can be variant categories of post-operative physiotherapy intervention. Hydrotherapy,
e.g. exercise in a warm water environment when recovering from knee surgery, was associated
with comparable outcomes with land-based rehabilitation up to 26 weeks post-surgery [15].

Fig. 2 Rom Examples. Left, Knee Extension Exercise Setup. Right, Straight Leg Raise Exercise Setup
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Hydrotherapy, though, requires specific environmental set-up restricting rehabilitation porta-
bility. Electrotherapy through muscle neuromuscular electrical stimulation (NMES), initiated
48 h after TKR, effectively improved functional performance following TKR [30]. The
method proposed in this work motivates the patient to actively put effort in order to perform
the exercises, in contrast with electrotherapy for which the motion is performed passively
based on electrical stimulation of the muscle cells.

The scope of this work is to examine whether a visually interactive stimulation through
gaming can help the patient to focus on the game instead of the pain or discomfort of the
exercise. The application proposed in this paper, uses a single custom-made, light, portable and
low-cost sensor node consisting of an Inertial Measurement Unit (IMU) attached on a lower
limb in order to capture its orientation in space in real-time, while the patient is completing a
physiotherapy protocol. The aim is to increase patient engagement during physiotherapy by
motivating the user to participate in a game. For this to occur, a novel classification algorithm
is proposed that automatically classifies an exercise in real-time as correct or incorrect,
according to physiotherapists’ set criteria and provides immediate feedback to the patient.

During the system’s initial evaluation phase in Chania’s General Hospital Orthopaedic
Clinic, a randomly selected control group of users performed the exercises under physiother-
apist supervision who marked them as accurately performed or not. An Inertial Measurement
Unit (IMU) node was utilized worn by the patient recognizing limb rotation and acceleration. It
is challenging to identify whether the proposed application classifies the exercises reliably
utilizing just a single sensor node. Providing gamified feedback to the patient at home or in
other locations in relation to performance using widely available mobile devices, is also
challenging, minimizing the need for expensive physiotherapy under supervision, resulting
in more engaging and accessible rehabilitation.

This paper focuses on the description of the rehabilitation system involving the hardware
sensor placed on the limb as well as the gamified environment and the testing of the software
framework in the hospital, while patients are undergoing physiotherapy treatment commonly
performed after TKR surgery. The main goal is to improve compliance to the physiotherapy
protocol, increase patient engagement, monitor physiological conditions and provide feedback
based on rewards via a gamified experience.

3 Background

3.1 Existing technologies for limb motion tracking

Several approaches listed below have been employed to track limb motion of diverse preci-
sion, cost and complexity [5]:

a) Optical systems. They use visual data captured by one or more cameras to triangulate the
3D position of a set of points detected. High precision can be reached, e.g. of a few
millimeters, but at a high cost. A cheaper affordable solution of lower precision, e.g. of a
few centimeters, is achieved by Microsoft Kinect [4], which uses only one RGB camera
and an infrared depth sensor. However, it suffers from lack of portability when compared
to wearable and mobile devices.

b) Exo-skeletons. These are rigid structures of jointed metal or plastic rods linked together
with potentiometers or encoders that articulate at the joints of the body [29]. These
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systems offer real-time, high precision acquisition and are not being influenced by
external factors [22], such as visual occlusion, quality and the number of cameras. Their
main disadvantage is the movement limitation imposed by the mechanical constraints of
the exoskeleton structures [13]. Furthermore, commercial medical devices of this type
have a prohibitive cost for the majority of the patients, not yet allowing their widespread
use for home rehabilitation. Still these devices can be a useful acquisition in clinics and
rehabilitation institutes.

c) Electrogoniometers. They are widely used to measure human joint movements. Their
advantage over conventional potentiometric goniometers is that they adapt better to body
parts and are not sensitive to misalignments. Their weakness is their high cost [34].

d) Magnetic systems. They calculate the position and orientation of a magnetic sensor probe.
They are used for motion tracking on high end applications with a reasonable cost for this
usage, but still high cost considering home based rehabilitation solutions [36]. Their main
disadvantage is that they are susceptible to electromagnetic interference from metal
objects in the environment or electromagnetic sources.

e) Inertial Systems. Inertial Motion Capture technology is based on miniature inertial sensors
(IMUs), biomechanical models, and sensor fusion algorithms [26]. The motion data of the
inertial sensors (inertial guidance system) is often transmitted via wireless network to a
computer, where the motion is recorded or viewed. Most inertial systems use gyroscopes and
accelerometers to measure rotational speed. These rotations are translated to a skeleton by the
software. Inertial motion systems capture the full six degrees of freedom body motion of a
human in real-time and can also include a magnetic sensor to achieve nine degrees of
freedom, although these have a much lower resolution and are susceptible to electromagnetic
noise. The benefits of using inertial systems are low cost, small dimensions, portability, and
large capture areas. The disadvantages include lower positional accuracy and positional drift.

The building block of this work is to use a single IMU sensor placed on the patient’s limb so
that its motion is tracked, as this is the option that optimally satisfies the main design
constraints of the application: portability and low-cost.

3.2 Related work in rehabilitation

Various rehabilitation systems have been proposed that employ limb motion tracking. An
Augmented reality (AR) system is proposed for the rehabilitation of hand movements which
have been impaired due to illness or accident [27]. Through the proposed system, the patient
can practice daily at home utilizing a standard computer, a webcam and two wireless 5DT data
gloves (Fig. 3). Using AR technology, a highly controllable environment including tasks of
varied difficulty levels is provided to the patients for them to perform the exercise gradually
and systematically. The use of the data gloves, however, raises the cost and the technical
complexity of this system which may require specialized technical support and maintenance.

Three methods were proposed for representing changes in human motion symmetry during
injury rehabilitation [9]. In this context, a high-cost motion capture suit requiring technical set-up
was employed, including seventeen inertial sensors, each worth about 2000 $, to measure body
postures (Fig. 4). The methods are tested on an injured athlete over four months of recovery from
an ankle operation and validated by comparing the observed improvement to the variation among
a group of uninjured subjects. The results indicate that gradual changes are detected in the motion
symmetry, thus, providing quantitative measures to aid clinical decisions.

Multimedia Tools and Applications (2020) 79:3161–3188 3165



Fig. 3 Hand movement rehabilitation using motion capture and data 5DT gloves [27]

Fig. 4 Inertial sensor network consisting of 17 IMUs [9]
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Several rehabilitation studies using motion tracking employ the Kinect optical system,
which, however, requires specialized set-up and technical support. Previous research has
identified patients’ general expectations for rehabilitation games and evaluated two newly
developed low-cost puzzle and archery rehabilitation games through surveys [8]. Patients
expressed preference to low-cost systems (< $100), demonstrating ease of use, interesting
game contents, proven clinical efficiency and access to rehabilitation games without prescrip-
tion although welcoming therapists to follow their progress (Fig. 5). This study identified the
need to improve reliability and precision of the low-cost hardware as well as to demonstrate
clinical benefits. Another study assessed the possibility of rehabilitating two young adults with
motor impairments using a Kinect-based system in a public school setting [6]. This study was
carried out according to an ABAB sequence in which A represented the baseline and B
represented the intervention phases. Data showed that the two participants significantly
increased their motivation for physical rehabilitation, thus improving exercise performance
during the intervention phases.

Fig. 5 Use of Kinect in conjunction with p5 glove [8]

Fig. 6 A screenshot of the Dexteria app developed to train fine motor skills [25]
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There also exist mobile, tablet-based applications [25] that exploit sensory input such as light,
touch and accelerometer in order to improve hand function post-stroke (Fig. 6). Preliminary findings
point to the potential of using apps in the process of post-stroke hand rehabilitation. However, the
input for this method is limited at finger tapping, not suitable for more complex exercises and not
based on motion tracking data providing feedback to the patient.

New interactive technologies have been recently applied to rehabilitation sessions with the aim to
increase strength and balance while improving patient stimulation, compliance and satisfaction with
treatment. The effectiveness of an activity coaching system including an accelerometer-based
activity sensor, alongside a home-based exercise program has been examined [14]. A hand-held
electronic device was connected to a mobile application on a smartphone providing information and
advice on exercise behavior during the day. There are no conclusive results yet, but the expectation is
that using the system will result in an increase of physical functioning in the group receiving the
activity coaching system. The use of integrating theWii-Fit game into a rehabilitation paradigm after
TKA has been investigated [10]. In addition to standard therapy, users received 15 min of Wii-Fit
gaming activity, while the control group received 15 min of additional lower extremity exercise.
There were no differences between groups for ROM. These findings suggest that the addition of
Wii-Fit as an alternative to lower extremity strengthening may be an appropriate rehabilitation tool.

The use of new digital technologies encourages the further investigation of automatic exercise
rehabilitation classification. There exists an increasing number of past research that employs IMU
nodes for evaluation of limb rehabilitation exercises [11, 16, 18]. Previous work indicates that when
multiple IMUs are employed, satisfactory exercise classification accuracy results are achieved based
on three, two and one IMUs [11]. Such results drive the further investigation of the challenging
classification problem using just a single IMU in this paper, enhancing maximum portability
compared tomultiple IMU systems, in conjunctionwith sufficiently high success rates ofmovement
detection. Employing more than two sensor nodes can achieve higher accuracy in ROM measure-
ment under certain conditions, e.g. when accurate node placement is ensured [16], however, such
systems are difficult to operate and of limited portability.

The system proposed in this paper, based on a single IMU sensor, aims to maximize portability
while maintaining acceptable motion detection success rates along with patient engagement and
training. Accurate measurements based on a single sensor node depend on conditions such as the
correct positioning of the sensor.

4 IMU functionality

Inertial Measurement Units (IMUs) provide the leading technology used in smartphones and
wearable devices in order to measure rotational and translational movements. In this project, the
IMU MPU-9150 is used (Fig. 7), which is small in size, cheap and portable. The utilized IMU
contains the following sensors:

a) 3-axis Accelerometer. The accelerometer measures inertial force caused by gravity and
acceleration. It can accurately measure rotation around the x and y axes (pitch and roll
angles), however, it is susceptible to noise caused by rapid changes of acceleration. For
capturing orientation along the z-axis, a magnetometer (compass) is used complementary
to the accelerometer.

b) 3-axis Gyroscope. The gyroscope measures the rate of change of any angle at a specified
frequency, e.g. 100 Hz. This makes it suitable for short-term observations and fast rotational
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signal changes. In relation to long-term observations, it is susceptible to drift errors. Mea-
surements should be sampled in exact intervals according to a specified frequency.

c) 3-axis Magnetometer. The magnetometer measures the earth’s magnetic field. It is used in
conjunction to the gyroscope sensor in order to capture rotation around z-axis (yaw angle).

d) Temperature sensor. It measures environmental temperature.

IMUs have the disadvantage of lower positional accuracy and positional drift. In order to
obtain accurate orientation measurements and minimize cumulative errors we need to combine
the accelerometer’s long term measurements (low pass filtering) with the gyroscope’s accurate
short term measurements in order to capture fast changes in rotation (high pass filter) [5].
Research literature puts forward a number of filtering methods for this purpose:

a) Complementary Filter. These filters follow a frequency-based approach, and this is one of the
first methodologies used to address IMU drift and positional accuracy issues. The key idea is to
treat one signal through a low-pass filter, the other one through a high-pass filter, and combine
them to obtain the final rate. In case of IMUs, it can be more effective to combine slowmoving
signals from the accelerometer and/or magnetometer and fast moving signals from the gyro-
scope. The result is to favor accelerometermeasurements of orientation at low angular velocities
and the integrated gyroscope measurements at high angular velocities. Such an approach is
simple but may only be effective under limited operating conditions. There are algorithms [2,
20] that employ a complementary filter process, using adaptive parameters. This algorithm
structure has been shown to provide a good trade-off between effective performance and
computational expense.

b) Kalman Filter. The Kalman filter [12, 17] has become the basis for the majority of
orientation algorithms and commercial inertial orientation sensors, like Xsens, Intersense,
and many others. The widespread use of Kalman-based solutions is a guarantee of their
optimal accuracy and effectiveness. Nevertheless, the Kalman filter implementation
imposes a high computational load due to the high volume of recursive formulas that
need to be calculated in order to minimize the least mean squared error.

Fig. 7 MPU-9150 Pins, axes of sensitivity for accelerometer, gyroscope and magnetometer as indicated in
MPU-9150 specification
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The selection of a filtering method depends on the positional accuracy and computational complex-
ity of the application. The filtering procedure in the present system is not handled in the sensor node
containing the IMU. Instead, it is handled by the application software. The application software runs
on Android devices. These devices usually follow ARM architecture using new generation
multicore CPUs that can handle higher filtering computational load. In this work, Kalman filtering
is preferred for its optimality over complementary filtering. Complementary filtering was also tested
and provided very similar angle measurements to these of Kalman filtering.

5 Application functionality

5.1 Application summary

The IMU is fitted on a specified limb location depending on the exercise performed. The patient user
starts the game by having the leg in a neutral pose ready to perform one of the predetermined
exercises. The raw data collected by the IMU is sent via Bluetooth to a mobile device. The
application computes an orientation measurement based on Kalman filtering. Real-time visualiza-
tion on a mobile device offers feedback in the form of a game presented to the patient. The filtered
data received are then provided as input to an automatic exercise classification algorithm. The
algorithm decides if the exercise was accurately performed. This classification feedback is displayed
on the mobile device in a readable form translated to a 3D visualization, after the end of the motion
(Fig. 1). The procedure is then concluded and the patient can perform another repetition of the same
exercise or can select a different exercise.

5.2 Gamification feedback

The main goal of the application is to improve compliance to the physiotherapy protocol, increase
patient engagement, monitor physiological conditions and provide feedback using a reward process
via a gamified experience, using the following methods:

a) Real-time IMU feedback. Raw data from the IMU are filtered and limb orientation is deter-
mined. By collecting this data, the proposed framework visualizes in real-time an approxima-
tion of the user’s motion in a 3D scene. In this context, a user engages in a serious game of a
specific objective, for instance, the patient is instructed to try and fly an airplane while moving
the knee (Fig. 8) in the vertical axis in order to collect coins. The game is designed so as to
motivate the user. A number of mini-games are designed for the four TKR exercises specified
by the physiotherapists (Table 1). The exercises in question are selected by the physiotherapists
based on the American Academy of Orthopaedic Surgeons TKR exercise guide [7] (Table 2).
For testing purposes, the user can select any combination of gamified TKR exercises listed in
Table 2 for every game implemented. The application’s main menu provides a simple way of
selecting exercises, games, as well as adding users (Fig. 9).

b) Classification feedback. The raw data of the IMU are inserted in the classification algorithm.
The algorithm decides whether the exercise has been accurately performed. If by the end of a
single repetition, the exercise was classified as accurately performed, the player is rewarded,
e.g. by increasing a coin score attribute and by providing animated information related to
the success of movement. If the exercise was classified as inaccurately performed,
in which case the movement violates angle or acceleration constraints, the
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application informs the user of the correct movement, e.g. by providing a limb
movement animation and encourages the patient to try again. Along with the
classification result, the algorithm also outputs the maximum ROM percentage of
the achieved movement for this repetition. A 100% percentage means that the
patient achieved maximum rotation of the knee. The maximum rotation of the
knee differs in each designated exercise. For instance, in relation to the Knee
Extension, it is 90° degrees. When a patient achieves a maximumROMpercentage of 50%
in a single repetition then this corresponds to 45° degrees orientation. The generated
repetition data are serialized in a local mobile database and are used through the Automatic
Graph Generation procedure of this application.

c) Automatic Graph Generation feedback. An important feature of this framework is its
graph generation capability. It is used during the testing of the application on inpatients in
order to track their progress during physiotherapy sessions and analyze collected data.
This data serves as an initial assessment of the physiotherapy framework capabilities and
improvements. It also helps the users monitor their daily exercise progress through easily
readable graphs. Moreover, it can be a useful tool for physiotherapists and orthopaedic

Fig. 8 Knee extension neutral position, upwards movement and downwards movement for airplane game
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surgeons in relation to tracking ROM improvements of patients over time. The generated
graphs track the progress of users for each repetition in respect to the maximum achieved
ROM and records which physiotherapy exercises were accurately conducted and which
were not. Two graph types are extensively utilized as indicated in the Results section, in
this paper. The percentage in relation to ROM per correct repetition plot graphs and the
Correct/Wrong pie graphs.

6 Implementation

6.1 Node hardware setup

The accelerometer and gyroscope readings received by the IMU are independent of the hardware
setup. The application is responsible for filtering the received data and not the sensor node. This
configuration provides two axes of rotation which is adequate for the majority of simple rehabili-
tation exercises and applications. The current project setup can be used by any wearable device that
employs an accelerometer and gyroscope and complies with the raw data communication format.
The sensor node consists of a Raspberry Pimodel ZeroW, the IMUMPU-9150 and a 1200mAhLi-
Ion battery (Fig. 10).

Raspberry Pi model ZeroW is a credit card sized computer that runs Raspbian with Pixel (Linux
Based kernel). It includes a pin header of 40 pins used for connections with all sorts of hardware
peripherals, in our case an IMU. In this work, the IMUmodel used is the MPU-9150. It contains an
accelerometer, a gyroscope, a magnetometer and a temperature sensor. It is connected to Raspberry
Pi and sends the raw data captured signifying rotational motion. The connection to Raspberry Pi is

Table 1 Implemented games for exercises in Table 2

Game Screen Shot Description
Airplane 

Game

When the user moves the operated 

knee, the airplane also moves 

vertically following the movement of 

the knee in order to gather coins.

Fish 

Game

When the user moves the operated 

knee, the fish also moves 

horizontally following the movement 

of the knee in order to gather coins.

Table 2 Common rehabilitation exercises for TKR

Exercise Placement Description

Knee Extension Shin From sitting position, the leg is extended, then lowered back
to starting position.

Straight Leg Raise Shin From lying on back position, the leg is lifted and then lowered
back to starting position.

Heel Slide Shin From lying on back position, the heel is moved up, then down
to starting position.

Lying Kicks Shin From lying on back position, an object is inserted under the
knee, thus, raising it. Then, the leg is raised and lowered back.
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achieved via the I2C protocol. This protocol employs the use of 4 pin connections: VCC, GND,
SDA and SCL. The IMU pins are simply connected to the appropriate Raspberry Pi pins that
implement the I2C protocol (Fig. 11). Raspberry Pi ZeroW integrates Bluetooth LowEnergy (BLE)
4.1 which makes it possible to send the raw data received from the node to our designed application
that runs on an Android mobile device. By employing a rechargeable 1200 mAh Li-ion battery, the
node can send data for seven hours on full capacity. This ismore than enough in order to perform the
initial testing of the designed framework for TKR patients.

6.2 Node software setup

The data are collected by Raspberry PI using a custom script implemented in the Python program-
ming language. Then the sensor node acts as a Bluetooth server waiting for incoming connections
from Android devices. When a connection is established, the sensor begins sending the raw IMU
data to the client (Android device). When a connection is received by the client, it sets up the IMU,
e.g. the gyroscope is sampled at 100 Hz. A received connection means the application is running on
the end-user. The accelerometer, gyroscope and temperature data are collected and sent via
Bluetooth to the application at a rate of 100 Hz. This continues until the user exits the application,
or the battery depletes. The script waits for incoming connections from nearby devices. If one is
found it configures the sensor using the appropriate I2C registers and continuously sends data till the
connection is interrupted. This happens if the Android device gets out of range and the connection is
reset, or if the battery on the sensor depletes and the script stops executing. If the connection is reset
the process is repeated, the sensor device is reset and data are sent continuously at a frequency of

Fig. 10 Node components. Left, Raspberry Pi. Center, IMU. Right, battery

Fig. 9 Main Menu of the application
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100Hz per second. The register configuration reading andwriting of the sensor is achieved using the
Register Map documentation for MPU-9150.

6.3 Application software setup

The client receives the data using anAndroid activity implemented in Java. TheUnity GameEngine
is utilized for visualization. The JavaNative Interface (JNI) is used in order to transfer data from Java
to C#, since C# is the programming language used by Unity. Unity provides leading
architecture for game development along with a number of assets available for free.
The application guides the user in order to become familiar with the application
gameplay and furthermore, to try and improve his ROM through implemented phys-
iotherapy exercises. The user selects the exercise to be performed, for instance, the
Knee Extension exercise. The system then guides the user in order to perform a few
initial training exercises. The system classifies the exercise performed as correct or
incorrect and provides visual feedback to the user. When the users feel comfortable

Fig. 11 Left, I2C connection implementation between Raspberry Pi Zero W and MPU-9150. Center, resulting
sensor node. Right, node placement on the shin of the leg

Fig. 12 Main gameplay user interface (GUI) with text animation after repetition classified as correct
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performing the selected exercise, they can select to engage in a series of mini-games.
By performing the limb motion, e.g. moving their knee, the users interact with objects
in 3D space.

Indicative games are the Airplane game and Fish game (Table 1). When selecting the Airplane
game, the users try to move an airplane in the vertical axis and gather as many coins as possible
while performing the physiotherapy exercises.When a repetition is correct, the user is informedwith
the help of the displayed visual hints (Fig. 12) and his ROM is recorded in order to generate ROM
graphs. A high value for ROM percentage means that the user gathered more coins and achieved a
greater coin score, therefore, a greater reward. Lower ROM represents lower reward. Both cases are
rewarded depending on their ROM percentage.

When a movement is incorrect, the systemwill not reward the users. It will offer hints and visual
guidance in order for physiotherapy to continue by correcting limb motion (Fig. 13). The reward is
greater for larger ROMs so that the patient is motivated to improve movement. Similarly, when
engagingwith the Fish game, the user moves a fish horizontally this time based on themovement of
the knee and tries to collect as many coins as possible depending on the ROM achieved. Along the
whole process, the system prompts the user by offering additional visual hints according to detection
of motion as captured by the sensor in order for the patient to accurately perform the designated
physiotherapy exercises.

The Main Gameplay Interface actively contributes to the user experience of the application
as it provides the following helpful information regarding the status of a repetition and the
status of the sensor itself:

a) ROM bar: It provides real-time feedback in relation to the ROM percentage. The ROM
percentage indicates the main angle of the knee rotation the patient achieved for a specific
exercise. For instance, in relation to Knee Extension a 100% percentage corresponds to
90° degrees.

b) Acceleration bar: It displays information about the acceleration of the movement.
It also indicates the maximum acceleration threshold of motion during the cali-
bration phase.

Fig. 13 Main gameplay user interface with text animation after repetition classified as incorrect indicating to the
user to try the movement again
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c) Main Angle: This is the main angle value computed by the filtering process. It is used to
determine the ROM. It also indicates the range of the main angle to be adopted
(minimumMainAngle, maximumMainAngle) during the calibration phase.

d) Side Angle: This is the side angle value computed by the filtering process. It indicates the
range of the side angle (minimumSideAngle, maximumSideAngle) to be adopted during
the calibration phase.

e) Status of the detection algorithm. It informs the user of the current repetition status. The
status can be Calibrating, Ready for Move, Move in Progress, Completed Please Rate and
Place Sensor Correctly.

f) Pain feedback. The user is asked to rate the amount of pain experienced during the
previously completed repetition. 1 out of 5 stars means no pain and 5 out of 5 stars
represent maximum pain imaginable.

g) Latest Rom: It indicates the latest maximum ROM percentage achieved in degree values,
in relation to the last repetition performed.

h) Coin Panel: The reward of the user is measured in coins gathered during a repetition.

6.4 Automatic exercise classification algorithm

A first iteration of the automatic exercise classification algorithm uses angular and acceleration
predefined thresholds to fine-tune the system (Fig. 14). In relation to future iterations, these
thresholds will be inferred from variant Machine Learning techniques, e.g. RVMs [31], using
the filtered sensor data collected. Such methods will maximize the success rate of the current
algorithm, using just a single node. A significant requirement is the correct and stable sensor
placement on the Shin of the patient’s limb. Correct placement can be illustrated by a doctor or
physiotherapist. If the wearable device isn’t placed with the correct orientation when patients
perform an exercise, they will be prompted that the sensor is not positioned correctly. The
input data of the algorithm is the filtered smoothed data of the sensor listed below and are
acquired using Kalman [12, 17]:

Fig. 14 Automated classification algorithm flow chart
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i) mainAngle. This is the angle at the direction of the exercise movement. It determines the
maximum achieved ROM of the patient.

j) sideAngle. This is the angle that detects sideways limb motion. It is used along with
mainAngle to determine when user movement deviates from what is perceived to be an
accurately performed exercise.

k) acceleration. The limb acceleration is used to detect motion activity and probable wrong
movement, e.g. if the limb movement is too fast.

The output of the algorithm is a computational decision whether the physiotherapy exercise is
performed correctly or incorrectly by the patient. The training parameters are the following
angle and acceleration thresholds:

a) minimumMainAngle, maximumMainAngle. These are the main angle’s minimum and
maximum thresholds in the direction of motion (pitch angle). If mainAngle exceeds these
thresholds, the exercise is deemed incorrectly performed.

b) minimumSideAngle, maximumSideAngle. These are the side angle’s minimum and max-
imum thresholds that detect sideways limb motion (roll angle). If sideAngle exceeds these
thresholds, the exercise is deemed incorrectly performed.

c) maxAcceleration. This is the maximum allowed acceleration. If acceleration exceeds this
threshold, the exercise is deemed incorrectly performed.

The simplified algorithm chart of automatic exercise classification indicates the possible states of the
repetition (Fig. 14). The system constantly checks the incoming filtered acceleration and gyroscope
data. If this data obey the acceleration and angle constraints then the algorithm continues from
calibration phase to movement phase until motion is successfully completed. If, at any time,
constraints are violated, movement is either restarted (calibration phase) or labeled incorrect
(movement phase). The user can be informed of the current state of the repetition by simply
checking the status of the detection algorithm located at the lower left corner of the gameplay GUI.

The implemented algorithm is designed to work for each one of the specified exercises and
can be generalized to additional exercises of similar format (Table 2). Each exercise will just
require different training parameters. Currently, these parameters are manually defined for the
exercises implemented, taking into account the training samples collected. When the first
iteration of the designed application is completed and more samples are collected from patients
with TKR, these parameters can be automatically adjusted using machine learning techniques
in order to reliably measure success rate. This is not a trivial task as the data collected from
training must be of a significant amount and variance in order to provide reliable and
generalized results.

7 Experiments

Two evaluation sessions of this framework were performed comprising of a training session
and a testing session. The initial training round was performed on six users. They were three
healthy users of ages 30–50 and three walking TKR patients of ages 64–80. Ten patients (eight
female, two male, range 64–80) underwent TKR surgery at General Hospital of Chania and
agreed to participate to the second testing round of this framework. The patients had no
background with Android devices or gaming.
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The selected exercise for testing was Knee Extension. The patients positioned themselves in a
neutral sitting pose presented with the Airplane Game. The goal was to raise their knee as high as
possible and at the same time accurately perform the exercise while observing the visual stimulus.
This stimulus was themovement of the airplane alongwith themovement of the knee. Patients were
instructed to perform a minimum of four repetitions of this exercise. There was the possibility to
perform additional repetitions and stop when they felt tired or in pain. This procedure was common
in both training and testing phases.

7.1 Training – healthy subjects & recovering TKR patients

Initially, the application was utilized by healthy subjects. This contributed to a first iteration of fine-
tuning neutral position angles for each exercise. A main concern when trying the application in
healthy subjects is that these angle constraints are not representative for the case of TKR patients.
Healthy subjects demonstrate full ROM while TKR patients, even at the stage of recovery, have
limited ROM of their knees. Therefore, a second iteration was deemed necessary in order to fine-
tune angle constraints with respect to patient limited ROM.

A recovering TKR patient, is an outpatient in physiotherapy follow up, 12–14 days post-
operation after suture removal. This patient still has a limited ROM but can operate the knee
normally and walk. We applied the same procedure to the recovering patient. An operated knee
of limited ROM when bent has a neutral position angle smaller than a healthy user. This fact
allowed us to record new neutral pose angle constraints and automatic classification algorithm
thresholds and make the appropriate changes in the respective implementations. These changes
involve fine-tuning the algorithm global thresholds for the Knee Extension exercise after all
recovering TKR patients feedback is received to represent the specific population sample from
Chania General Hospital. In both cases, a single session was performed with each patient. Each
patient used the application for one day compared to hospital inpatients for whommultiple data
readings could be collected in a span of several days. The duration of this training phase was
15 days.

At this point, a simplified evaluation of the proposed system could be performed by the
participants. This evaluation aimed at improving the current framework in terms of perfor-
mance and usability. The users were asked whether it was easy to play the games while they
had the sensor on their limb and whether there were confusing aspects of their experience.
They were encouraged to offer suggestions for system improvement.

Furthermore, the physiotherapists’ feedback during this training phasewas invaluable as it helped
finalize the experimental procedure and the reward system that the game provided. Physiotherapists
insisted that the coin reward system used should be as clear and simple as possible in order to be
understandable by as many patients as possible independently of age criteria or other comorbidities.
Also, they noted that the movement of the knee for a specific exercise should correspond to the
visual stimulus in the physical world. For example, the upwards movement of the airplane should
correspond to the upwards movement of the Knee Extension exercise.

7.2 Testing – TKR inpatients

The final testing phase of the application on patients after TKR surgery has been conducted in
a similar manner at the Chania General Hospital Orthopaedic Clinic under the supervision of a
physiotherapist using the same postoperative procedure. Patients were operated by the same
surgical team using the medial parà patellar approach and started their physiotherapy protocol
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48 h post op after the removal of the drain. Exclusion criteria were neurological deficit,
previous operation on the ipsilateral or contralateral hip or knee, or functional deficit.

Ten TKR patients consented to try the application in order to gather motion data (Fig. 15). TKR
surgery is a common operation. The frequency of this operation in the public General Hospital of
Chania is approximately 5 patients permonth. The datawere collected in approximately 2months of
testing. A patient that has undergone TKR surgery usually stays in the hospital for a period of four
days up to twelve days depending on individual recovery progress. A patient’s recovery progress
depends on age, physical condition and variant comorbidities. Younger patients tend to recover
faster compared to people with obesity, respiratory problems or other comorbidities.

We performed one to three training sessions with each patient. A session is the testing of the
application for a single day on a patient. During each session, the patient is advised to perform a
number of repetitions of the Knee Extension exercise. The first session for each patient was
performed two to five days after surgery depending on recovery progress. The second session for
the same patient, was performed four to five days after the first session. Lastly, the third session if
any, was performed eight to nine days after the first. This could happen if a patient’s recovery
progress was slow, resulting in staying longer in the hospital. The number of the repetitions in a
session can be four to thirteen depending on the patient’s physical condition. Based on these
repetitions, motion data was collected by the application. Graphs are produced in real-time that
showcase statistics about the ROMpercentage for all correct repetitions of the patient performing the
Knee Extension Exercise.

8 Results

8.1 Rom graphs

ROM graphs that are generated during the experimental procedure associated to the two-month
testing sessions along with patient feedback provided input in relation to the strengths and
weaknesses of the proposed rehabilitation system. The majority of the patients understood well

Fig. 15 TKR inpatients in Chania’s General Hospital Orthopaedic clinic that consented in participating in the
experiment
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the goal of the game and were engaged with the simple airplane scene. These patients exhibited
higher ROM percentage over-time and on each session.

A single ROMmeasurement in the graph represents a correctly classified repetition of the Knee
Extension exercise performed by the patient and detected by the exercise classification algorithm.
The vertical axis shows the ROM percentage achieved according to accelerometer measurement.
100% is the maximum achievable percentage for Knee Extension that corresponds to 90° degrees.
The horizontal axis indicates the session dates of the repetitions. Summarizing, these graphs
represent the ROM percentages achieved by a patient based on the testing sessions in relation to
the correct Knee Extension repetitions detected by the algorithm.

In 80% of the collected samples, the maximum ROM percentage measurements are increasing
and follow a similar pattern as shown in Fig. 16. This indicates that patients were constantly trying to
improve their previous repetition performance by raising the airplane even higher and gathering
more coins. At the end of certain sessions, the ROM measurements declined, in some cases,
indicating that the patient was tired by the performed repetitions. This was mostly the case for
patients demonstrating slower recovery due to other comorbidities. The slower recovery of these
patients didn’t necessarily result in lower engagement during the airplane game. Patients were still
trying to improve their previous repetition 80% of the examined cases.

A minority of patients didn’t improve their ROM (Fig. 17). On these cases the patients
didn’t understand well the goal of the game and were not engaged with it. Therefore, patients
only performed the repetitions because they were instructed to do so.

There was also a single case of a patient who performed a higher ROM repetition as
recorded while the knee had actually a lower functional ROM. The patient achieved that by
slowly positioning the entire body backwards in the direction of movement while sitting on a
bed. The acceleration or angle constraints were not violated, so the ROM percentage was
measured and was close to 100% (Fig. 18).

Fig. 16 Rom graph generated by the application for the knee extension exercise tested. This graph corresponds to
engaged and improving patient
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8.2 Classification charts

While this testing was focused mainly on measuring the ROM of the patient, gathering
feedback and recording their reactions, an initial evaluation is also provided regarding the
implementation of the exercise classification algorithm in this first iteration. Automatically
generated graphs show the detected classification percentage of the algorithm. The

Fig. 17 Rom graph generated by the application for the knee extension exercise tested. This graph corresponds to
non-engaged and declining progress patient

Fig. 18 Rom Graph generated in relation to the Knee Extension Exercise tested corresponding to the patient
wrongly positioning the body
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classification percentage indicates how many of the total repetitions performed for an
exercise are classified as correct and therefore also indicates the repetitions classified
as incorrect. This percentage is compared with the actual classification percentage that
is provided by the supervising physiotherapist. Then the error percentage of the
algorithm can be measured by comparing the actual physiotherapist percentage with
the application’s generated percentage using the relative difference of the values. One
way to define the relative difference of two numbers is to take absolute difference
divided by the maximum absolute value of the two numbers. So the error percentage
is described by the following formulae (Fig. 19).

For instance, a patient achieving a correct classification percentage of 73.1%
according to the automated algorithm (Fig. 20 left), that has an actual correct
percentage of 69.2% according to the physiotherapist, provides an algorithm error
percentage of 5.6% in this case. For a different patient who employed a strategy of
demonstrating higher ROM than possible based on body positioning as explained
above, the respective percentages were an algorithm correct percentage of 85.7%
(Fig. 20 right), a physiotherapist’s actual percentage of 14.3%, resulting in an algo-
rithmic error percentage of 83.3%. The observed data indicates that there can exist
large variation in resulting accuracy of the algorithm. It is challenging to implement a
generalized algorithm that avoids overfitting based on having only a few samples
during these two months of testing. Future iterations should optimally rely on a larger
amount of data.

Detecting ‘cheating’ patient strategies when employing a single IMU sensor is
significant. For such cases, there should be a minimum of two sensors, one placed
on the shin and one on the thigh of the patient. However, this increases the cost of
the application and reduces portability which were the main design constraints of the
proposed system. There are two supplementary ways to resolve this issue. Firstly, the
physiotherapist should train the patient to accurately perform the exercise such as the
knee extension exercise so that, later, the patient can repeat the exercises alone with
minimum supervision. Secondly, the user interface of the application should instruct
the patient to maintain a neutral pose. This should be preferably implemented to
include animations of humanoid postures rather than only text and image hints.
Therefore, it is essential to provide a solid setup for the application. For example,
while a knee extension exercise can be performed in bed, using a chair to sit on
instead can avoid this form of ‘cheating’ by helping the patient to support the back
and accurately exercise.

Throughout the experimental procedure it became apparent that the classification
error is greatly influenced by the starting position of the sensor. It is essential that the
sensor is accurately oriented so that side angle is close to 0° degrees in order to avoid
inaccurate exercise repetitions. The IMU is very sensitive to misalignments. If the
sensor is not placed correctly, the data collected from the sensor can lead to inaccu-
rate results.

Fig. 19 Formulae for error percentage calculation of designed algorithm
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8.3 Remarks

We analyzed the data collected and interpreted the results. The goal is to understand in a
qualitative manner the feedback collected from the patients. In this iteration, quantitative
measures that include ROM and classification feedback were provided. The collected data
provide qualitative feedback towards understanding the user’s and physiotherapist expecta-
tions in relation to the proposed rehabilitation system.

Insight gained throughout the experimental procedure while working with TKR patients, is
note-worthy. When the patients were asked to perform an exercise based on the proposed
rehabilitation system, they were reluctant or hesitant at best. One of them even refused to
perform the experiment. Once the orthopaedic surgeon or physiotherapist explained the
procedure, they cooperated well and contributed to this research project although still hesitant
in some cases. It was common for a patient to focus on the experienced pain before embarking
on the experimental procedure. This fact negatively influenced the psychological state of the
patient. After performing a single repetition, though, the patient was usually more tolerant of
pain of the knee, ignoring it to a certain degree. There were many cases when after only a few
repetitions, patients were heavily engaged in the game as indicated by their behavior and facial
expressions. Examples of such expressions were smiling facial expressions, laughing or
eagerness to start the next repetition. On the other hand, this eagerness could result in hasty
movement and, thus, incorrect repetitions. In such cases, the patient was advised to perform
slower and steadier movements of the knee. After a certain amount of repetitions, the pain was
again more dominant than user engagement and the ROM percentage started to decline. By the
end of the session, 80% of the participants were eager to perform another session.

When patients were asked if they had found the games helpful, only one patient doubted
their effectiveness for training, although physiotherapists recorded noticeable improvement of
the patient’s limb motion. Other patients realized they were applying enhanced personalized
effort into their physiotherapy protocol when utilizing the gamified application.

9 Conclusions

The current framework introduces an ultraportable rehabilitation application comprising of just
a single IMU sensor linked to a serious game environment, to be adopted by patients that have
undergone TKR surgery for their highly repetitive, but very significant post-operative

Fig. 20 Automatic generated pie charts of the application indicating correct and wrong repetitions of an exercise
performed by different patients (left and right), according to the first iteration of the implemented algorithm
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physiotherapy, ultimately minimizing physiotherapist supervision, at most locations. This
framework can run on Android mobile devices with the use of a single sensor node maximiz-
ing portability and ease of use. Through application feedback, accurate patient exercise and
compliance can be achieved by succeeding at each mini-game objective. Future development
should overcome limitations of few testing samples and derive a reliable accuracy result from
the classification process. We continue to compare patient engagement between a
control group that uses traditional physiotherapy treatment and a group that uses the
proposed gamified approach in the hospital setting and validate even further which are
the technological means through which patients are motivated and satisfied by
gamified rehabilitation strategies.
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